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ABSTRACT

Seasonal precipitation at the decadal time scale is predicted using the downscaling super ensemble (DSE) method, which
is developed by combining the superensemble procedure with a statistical downscaling method in this study. The multi-
model data utilized are the long-term integration of six atmosphere–ocean general circulation models (AOGCMs) and
the downscaling method is based on the singular value decomposition with the empirical orthogonal function (EOF)
truncation to correct the systematic bias in the dynamic models.

Interestingly, even though prediction skill in the training period is increased with increasing number of AOGCMs
used, the skill is often decreased in the independent period. It is found that prediction skill in the independent period
continues to rise when we use an optimal combination of predictors. The optimum combination used in constructing the
superensemble model is the super-3 ensemble, which is a combination of three AOGCMs (CCCma, CSIRO, and NCAR)
among the six AOGCMs used in this study. In general, the first four EOFs of sea-level pressure (SLP) in the super-3
ensemble are very similar to those of the observed SLP. The dynamic link between Korean winter precipitation and East
Asian monsoon circulation in the super-3 ensemble is similar to that of the observed indicating that the super-3 ensemble
realistically simulates the circulations in the East Asian monsoon region. The cross-validation for the prediction of the
super-3 ensemble shows that the correlation skill score is about 0.49, which is significant at the 5% level. The results
provide hope for regional climate prediction in decadal time-scales using superensemble methods together with statistical
downscaling. Copyright  2004 Royal Meteorological Society.

KEY WORDS: superensemble; downscaling; atmospheric circulation; rainfall; general circulation models; East Asia; decadal time scale;
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1. INTRODUCTION

Recently, atmospheric variations on an interdecadal time scale have attracted attention from the meteorological
community, mainly because of the global warming trend obscured by the interdecadal variation and its large
impacts on agricultural production and hydrological management (Trenberth, 1990; Xu, 1993; Busuioc and
von Storch, 1996; Solman and Nunez, 1999). The decadal prediction of temperature and precipitation becomes
important for long-term water resource management. In the present study, we attempted decadal prediction
by combining longer-term atmosphere–ocean general circulation model (AOGCM) simulations and observed
data.

The statistical relationship between the observed station data and the observed atmospheric circulation
has been studied, and statistical prediction methods have been developed based on the relationship (von
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Storch et al., 1993; Muppy, 2000). These relationships are then applied to the circulation simulated by a
general circulation model (GCM) in order to generate predictions of local climate (Karl et al., 1990; von
Storch et al., 1993). Statistical downscaling approaches have subsequently emerged to satisfy the need to
interpolate regional-scale atmospheric predictor variables to station-scale meteorological series (Kim et al.,
1984; Wigley et al., 1990; Wilby et al., 1998). Fundamental to the approach is the assumption that stable
empirical relationships can be established between atmospheric processes occurring at disparate temporal
and/or spatial scales (Wilby et al., 1998).

A multiple regression technique was used by Wigley et al. (1990) to derive regression equations link-
ing large-scale spatial averages of precipitation and surface temperature and other large-scale variables
to local precipitation and temperature time series on the west coast of the USA. There are lots of
similar studies with regression-based downscaling (Wilby et al., 1990; Kilsby et al., 1998). Von Storch
et al. (1993) propose a mixed empirical–dynamic approach to translate the large-scale GCM information
into a high-resolution distribution by using canonical correlation analysis (CCA) to develop relationships
between large-scale monthly sea-level pressure (SLP) fields and local monthly Iberian winter rainfall. They
found that the method was skilful in reproducing the observed Iberian Peninsula precipitation anoma-
lies from SLP fields. Wang et al. (1999) predicted US precipitation by using the sea-surface temperature
(SST) field obtained from the successful prediction of the 1997–98 El Niño by the National Centers for
Environmental Prediction (NCEP) coupled model. The assumption in using a coupled model is that the
AOGCM produces atmospheric variation with interannual and interdecadal time scales in spite of sys-
tematic error. A major part of this systematic error can be corrected by the statistical relationship, or
coupled pattern, between the predicted and observed anomalies (Graham et al., 1994). The most com-
monly used methodologies of the coupled pattern technique are based on singular value decomposition
analysis (SVDA) and CCA. Ward and Navarra (1997) applied SVDA to simultaneous fields of GCM-
simulated precipitation and observed precipitation to correct the errors in model response to SST forc-
ing. CCA has been widely used for a statistical seasonal prediction system (Barnett and Preisendorfer,
1987; Barnston, 1994). A recent study by Feddersen et al. (1999), however, demonstrated that the post-
processed results are not sensitive to the choice among the methods based on CCA, SVDA, and empirical
orthogonal function (EOF) decompositions. In this study, a downscaling superensemble (DSE) method is
developed to correct the systematic large-scale model bias by combining a superensemble with a statis-
tical downscaling method that is based on SVDA with EOF truncation. This study is different to the
previous studies of Wang et al., (1999) and von Storch et al. (1993), in that the prediction is based on
a superensemble of the downscaling prediction, which is obtained from large-scale predictors of various
AOGCMs.

The paper is divided into sections as follows. In Section 2 the data and methodology used in this study
are described. The results on the observed links between local climate and large-scale circulation are given
and discussed in Section 3. Then, in Section 4, the superensemble predictions are described. The results are
discussed and summarized in Section 5.

2. DATA AND METHODOLOGY

The data used in this study are the monthly precipitation of 12 stations in Korea for 49 years from December
1954 to February 2003 (Figure 1). The observed monthly mean SLP was obtained from NCEP–National
Center for Atmospheric Research (NCAR) reanalysis data with a horizontal resolution of 2.5° × 2.5° for
45 years from December 1954 to February 1999. The data for the AOGCMs are the monthly mean SLP
over the monsoon region (15 °N–70 °N, 60 °E–150 °W) in East Asia. The data were obtained from the
Intergovernmental Panel of Climate Change (IPCC)–Data Distribution Center (DDC) for the same period as
the observed precipitation. The AOGCM data used in this study are the multi-century control run of NCAR,
Canadian Centre for Climate Modeling and Analysis (CCCma), Commonwealth and Scientific Industrial
Research Organization (CSIRO), Center for Climate System Research (CCSR), Hadley Centre for Climate
Prediction and Research (HCCPR) and Deutsches Klimarechenzentrum (DKRZ) that have participated in
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Figure 1. Locations of the 12 Korean stations used in this study. The shaded areas of the Taeback and Soback Mountains are marked
in the eastern and the central parts of the Korean peninsula, respectively

Atmospheric model Intercomparison Project–Coupled Model Intercomparison Project. HadCM2 has a spatial
resolution of 2.5° × 3.75° and the modelled control climate shows a negligible long-term trend in surface
temperature over the first 400 years (Jones et al., 1997). CGCM1 of CCCma has a resolution of 3.7° × 3.75°

and the control climates of CGCM1 are described by Flato et al. (1999). CSIRO-Mk2 has recently been used
for a number of more sophisticated climate-change simulations (Hirst et al., 2000) and has a spatial resolution
of 5.6° × 3.2°. The CCSR AOGCM has a spatial resolution of 2.8° × 2.8° and the results of the experiments
are discussed by Emori et al. (1999). A multi-century control simulation with the coupled model has been
performed using the present-day CO2 concentration (e.g. 345 ppmv in CCSR) to evaluate the stability of the
coupled model climate, and to compare the modelled climate and its variability to that observed. Note that the
models use flux correction, except for the NCAR AOGCM (Benestad, 2002). Please refer to the IPCC–DDC
Webpage for detailed information regarding ECHAM3/LSG and NCAR DOE.

The model bias and error result in low predictability, although this shortcoming can be corrected if the
error and bias are systematic (Feddersen et al., 1999). The correction procedure, referred to as post-processing,
can be developed based on the statistical relationship between the model and the observation. The common
methods may be based on SVDA (Feddersen et al., 1999) and CCA (von Storch et al., 1993) between the
observation and the model output. SVDA and CCA are thoroughly described in Bretherton et al. (1992).
In this study, SVDA with EOF truncation is used to obtain the coupled mode between the large scale and
regional scale. Before obtaining the transfer function between the two fields, EOF analysis is applied to the
simulated and the observed fields, separately, to reduce the spatial dimensions. After that, SVDA is used to
extract coupled modes between the two fields. The covariance matrix in SVDA is constructed by using the
normalized time coefficients of EOF analysis in both sides. The downscaling transfer function was constructed
as follows:

PRj (t, x) =
n∑

i=1

αiSi(t)Ri(x) (1)

where PRj (t, x) indicates the downscaling prediction, Si(t) is the time coefficient of the SVD mode for the
large-scale predictor, and Ri(x) represents the covariance map between regional precipitation and the time
coefficients of the SVD mode for the regional-scale predictand. If regional precipitation data are normalized
and in addition the expansion coefficients have a variance of one, Ri(x) is identical to the correlation map.
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αi is the correlation coefficient between the time series of the SVD mode of the large-scale predictor and the
corresponding SVD time series of the predictand. n is the total number of SVD modes retained.

The superensemble prediction is obtained by weighting the downscaling prediction optimally as follows.

P(t) = β0 +
m∑

j=1

βjPAj (t) (2)

where P (t) indicates the superensemble prediction, m is the total number of downscaling predictions, and β

indicates the regression coefficients of multiple linear regression analysis. We have used the averaged value
PAj (t) of station values PRj (t , x) obtained from downscaling for simplicity and reduction in error.

3. DOWNSCALING PREDICTION

In this section we discuss the statistical link between observed Korean precipitation and East Asian SLP in
the winter season and how much this relationship matches the physical mechanism. The performance of the
downscaling model is sensitively dependent on the number of EOFs retained for the SVDA and the number
of SVD modes used in the transfer function (Busuioc et al., 1999). In order to validate this, the dependence
of the skill sensitivity on the number of retained modes is discussed.

The first two EOF modes of winter precipitation are shown in Figure 2. The first EOF mode explains
77.6% of the total variance and has the same sign and magnitude over the entire area, implying that the
climate of the Korean peninsula is controlled mainly by the same climate regime that could be linked to a
common large-scale circulation process. The time coefficient of the first mode shows the dominant decadal
variability and strong signal, especially in the recent period since 1975. In fact, the correlation between the
time coefficient of the first mode and averaged precipitation in Korea is about 0.99, indicating that the first
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Figure 2. Spatial patterns of (a) the first and (b) the second EOF for winter precipitation in Korea (1954–98). The time coefficients of
the first and second modes are shown in (c) and (d) respectively
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mode explains much of the variability of Korean precipitation. Compared with the first mode, the second
EOF mode (6.4% explained variance) shows the influence of mountains; it has a dipole structure which is
separated by two mountains, with one along the east coast and the other along the south coast of the Korean
peninsula.

The first two EOFs of SLP show the north–south and east–west patterns in East Asia in the winter season
that explain 31.1% and 16.8% of the total variance respectively (Figure 3). The normalized time coefficients
of the first two modes are also presented in the lower panel of Figure 3. The first mode shows an increasing
trend and the second mode shows decadal variability. In the EOF spatial pattern of the second mode, the
Korean peninsula is located in the centre of the dipole structure with one centre of action located over
East Asian continent and the other one located in the North Pacific Ocean. This spatial pattern suggests
that the warm moist flow from the North Pacific Ocean is enhanced in the positive phase of the time
coefficient (i.e. around 1970). The trend mode with the north–south pattern appears to be associated with
the warming concentrated at high latitudes, in particular over the continents in the Northern Hemisphere in
winter.

Figure 4 shows the first SVD mode between observed SLP and observed precipitation. The correlation
coefficient between the expansion coefficients is 0.91 for the first SVD mode, which accounts for 23.2%
of total covariance (Figure 4c). Here, the first 10 EOFs of SLP and precipitation have been retained for
the subsequent SVDA. The SLP pattern shows an east–west pattern around the Korean peninsula and the
precipitation pattern has the same sign over the entire area, although the highest values are in the eastern part
and these decrease over the southwestern part. The two spatial patterns of the first SVD mode resemble the
EOF patterns shown in Figure 3(b) for large-scale SLP and Figure 2(a) for regional-scale precipitation. These
two spatial patterns of the first SVD mode represent a dynamic link that is physically very reasonable, because
Korean precipitation is increased (decreased) when anomalous anticyclonic circulation over the North Pacific
is intensified (weakened). For example, regional precipitation in the early 1970s is increased by providing
the Korean peninsula with warm, moist air by a stronger than normal southeasterly wind. But the pattern is
reversed in the early 1980s, mainly due to the strengthening of a cold, dry flow from the continental region.
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coefficients of the first and second modes are shown in (c) and (d) respectively

Copyright  2004 Royal Meteorological Society Int. J. Climatol. 24: 777–790 (2004)



782 M.-K. KIM ET AL.

60N

45N

30N

15N
60E 90E

3

2

1

0

1955

Year

1960 1965 1970 1975 1980 1985

COR = 0.91(c) CV1 (23.2%)

(a) SLP Pattern (b) PRCP Pattern

–1

–2

–3

120E 150E 180 150W

Figure 4. Covariance patterns of (a) the observed SLP in East Asia and (b) winter precipitation of Korea. These patterns explain about
23.2% of total variance. (c) The correlation coefficient (0.91) between the respective amplitude time series of these patterns

The other dipole structure is also located around the North Pacific Ocean with one centre of action at 40 °N
latitude and the other centre of weak action around the Bering Sea.

Figure 5(a) and (b) shows the temporal evolution of spatial averages of the estimates obtained from
downscaling and of the observed winter precipitation for year-to-year and decadal time scales (5 year running
mean) respectively. The correlation coefficient between the observed and the estimated is about 0.79 for the
training period and 0.76 in the independent period. The decadal variability shown in Figure 5(b) resembles
the time coefficient of the first EOF mode for winter precipitation and of the second EOF mode for the
large-scale SLP field, implying that the relationship between the two fields is stable in the coupled mode
for the whole period. This suggests that the downscaling technique could be used as an effective tool for
downscaling large-scale information simulated by the GCMs or AOGCMs to local scales.

Table I shows the dependence of the skill sensitivity on the number of retained EOF and SVD modes in
the observations. Although six modes show better skill than the 10 modes used in this study, which is made
subjectively based upon the experience of study, the difference is not large, indicating that correlation skill is
not sensitive to the number of retained EOFs in the observations. It is usually emphasized that the length of
the verification period is important. But, one needs a reasonably large developmental sample if the resulting
equation is to be stable (Wilks, 1995). For example, Busuioc et al. (1999) show that the downscaling models
are stable using data for 90 years, which satisfies the two conditions of long training and long verification
periods. Unfortunately, this is not satisfied in our study. In this study, the decadal mode is important to
prediction skill. From lots of tests, we have found that the prediction skill decreased when less than 30 years
of data were used in the training period. This is because the coupled mode did not capture the decadal
variability in such a short training period. In fact, the variance in the 15 years’ time scale is dominant in
winter precipitation, which is easily confirmed in Figure 2(c). Therefore, we have concluded that it was better
to use at least 30 years, corresponding to two cycles of such a period, in order to pick up this variance in
the training period. We have also found that the skill is not sensitive to the number of retained EOFs even
in the training period of 30 years, implying that the downscaling models are skilful as long as the decadal
mode can be extracted for the training period.
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Table I. The correlation skill of the statistical downscaling models for various combinations of the number
of EOFs of SLP and precipitation (PP) retained for SVDA and the number of SVD pairs used in the
statistical downscaling model. The skill is expressed by the correlation coefficients between observed time
series and the reconstructed time series obtained from applying the downscaling model to the large-scale

observed SLP fields

Number of EOFs Number of SVDs Fitting (1954–89) Verification (1990–98)

SLP PP

3 3 3 0.72 0.69
4 4 4 0.74 0.76
5 5 5 0.74 0.76
6 6 6 0.77 0.81
7 7 7 0.78 0.79
8 8 8 0.78 0.78
9 9 9 0.78 0.76

10 10 10 0.79 0.76

4. DOWNSCALING SUPERENSEMBLE PREDICTION

As shown in Section 3, the downscaling model used in this study has reproduced the observed variability
of regional precipitation from the large-scale SLP predictor even on a year-to year time scale. This suggests
that if the reasonable large-scale predictors of climate models (i.e. AOGCMs) are provided for the statistical
downscaling method, the regional climate could be obtained. In this section, we examine the skill of the
various AOGCMs, different combinations of AOGCMs, and the sensitivity of the number of retained EOF
modes.

Figure 6 shows the temporal evolution of the spatial averages of the estimated and the observed winter
precipitation. The estimated precipitation was obtained from the downscaling of the large-scale SLP of the
various AOGCMs. The ensemble mean (arithmetic average of predictions) follows the time evolution of the
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observed values even though it shows much less variability than the observed precipitation. The downscaling
skills of each AOGCM are quite different from each other, even though the estimated precipitation shows a
band shape similar to the time evolution. The highest skill appears in the NCAR AOCM, with a correlation of
0.44 for the independent period (1990–2000). CCSR also shows good skill compared with other AOGCMs.
This is because the first EOF mode of SLP simulated by the NCAR AOGCM was quite similar to the observed
pattern (Figure 3(b)) with the east–west dipole pattern, compared with the other AOGCMs.

Even if all the potential predictors could be assembled and were physically relevant with each other,
it would generally not be useful to include all of the potential predictors in the regression analysis. This
is because the predictors are almost always mutually correlated, so that the full set of potential predictors
contains redundant information (Wilks, 1995). It is well known that the mean-square error on developmental
data is underestimated, which is called artificial skill (Glahn, 1985; Michaelson, 1987), implying that the
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Figure 6. Observed (heavy solid line) and the predicted time series (solid lines) of 5-year running mean winter precipitation of Korea.
The downscaling predictions are obtained from Equation (1) by using the SLP predictors of six AOGCMs. The heavy long dashed,
dotted and short dashed lines indicate the downscaling prediction by NCAR, CCSR AOGCM predictor and the ensemble mean of six

downscaling predictions respectively

Table II. The correlation skill of downscaling superensemble prediction. Super-3 to -6 indicate the optimum superensemble
combination based on downscaling prediction obtained from the large-scale predictors of three to six AOGCMs

Case Training period (1954–89) Verification period (1990–2000) AOGCM combination

Year-to-year Decadal Year-to-year Decadal

NCAR 0.65 0.61 0.44 0.57 NCAR
Super-3 0.77 0.66 0.77 0.87 NCAR, CCCma, CSIRO
Super-4 0.83 0.77 0.50 0.55 NCAR, CSIRO, CCCma, DKRZ
Super-5 0.87 0.82 0.22 0.45 NCAR, CSIRO, CCCma, DKRZ, CCSR
Super-6 0.89 0.86 0.11 0.36 Six AOGCMs
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skill on the developmental data is larger than on independent data. Table II shows the correlation skill of the
downscaling superensemble based on Equations (1) and (2). Interestingly, although increasing the number of
AOGCMs, that participated in constructing the superensemble model increased the correlation skill in the
training period, the correlation skill decreases after arriving at the optimum combination in the independent
period. The optimum combination used in constructing the superensemble model is a super-3 ensemble, which
is a combination of three of the AOGCMs (CCCma, CSIRO, and NCAR) among the six used in this study.
It is well known that the skill in the training period is somewhat proportional to the number of independent
variables. But, the prediction skill depends on how much the relationship between the dependent variable and
independent variables is physically reasonable and statistically stable over the whole period. Although the
skill is perfect in the training period, it is possible to have nearly zero skill in the independent period. This
is well known as an overfit regression (Wilks, 1995). Therefore, Table II shows that super-3 ensemble is the
most stable, indicating that the regression coefficients are also applicable to the independent period and have
not resulted from an overfit regression. We also found that the super-3 ensemble is relatively stable even
when using a training period of 30 years. However, it is occasionally unstable for some time spans.

Figure 7(a) and (b) shows the series for the super-3 ensemble prediction (super-3 ensemble in Table II)
and the observed precipitation on both interannual and decadal time scales respectively. The time series of
the super-3 ensemble prediction in the training period is very similar to that of the observed precipitation,
with a correlation coefficient of 0.77, even though it is lower than in the observations shown in Figure 5(a).
Even in the independent period there is a high correlation of 0.77, which is significant at the 1% level, even
though the independent sample has a small number of degrees of freedom.

Using the mean SLP of the super-3 AOGCMs (CCCma, CSIRO and NCAR), the variability of SLP is
analysed in order to verify the performance of the super-3 ensemble. The first two EOFs of the SLP in the
super-3 ensemble show east–west and north–south patterns in East Asia in the winter season that explain
23.2% and 15.8% of the total variance respectively (Figure 8(a) and (b)). These patterns resemble the patterns
of the observed SLP shown in Figure 3. But, compared with the trend mode of the observed SLP shown in
Figure 2(c), the second mode of super-3 shows the decadal mode without the trend, mainly due to the control
run data of the AOGCMs (Figure 8(d)). The next two EOFs of SLP in the super-3 ensemble are also very
similar to the patterns of the observed SLP (not shown). This suggests that the super-3 ensemble can generate
the large-scale patterns corresponding to those of the observations. We conclude that the basic assumption,
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Figure 7. (a) Year-to-year and (b) 5-year running mean time series of the observed (solid line) and the predicted (dashed line) winter
precipitation of Korea. The prediction was obtained from Equation (2) with the optimum combination, super-3 ensemble in Table II
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namely that the AOGCMs are doing a credible job on the large scale, is justified, even if the first two model
EOFs represent only 39.0% of variance compared with the 47.9% explained by the first two observed EOFs.

The first coupled mode between the SLP of the super-3 ensemble and the observed precipitation (with
the largest correlation of 0.7 between the two time coefficients) accounts for 44.7% of the total covariance
(Figure 9). The SLP pattern of the super-3 ensemble is similar to the SLP pattern of the observations shown in
Figure 4(a), except for the positive signal around the Ural Mountains (Figure 9(a)). The precipitation pattern
of the super-3 ensemble has the same sign over the entire area, with the highest values in the eastern part
and decreasing over the southwestern part (Figure 9(b)). This pattern is also very similar to the pattern of
the observations shown in Figure 4(b). Spatially, these results seem to verify the predictability of the super-3
ensemble. The predictability of the downscaling method depends on the period, the coupled model used, and
the target regions. The super ensemble enhances the predictability by using an optimum combination of the
prediction of the downscaling method in order to explain the variability of the observed precipitation. In our
cases, we did not use the constraint that the sum of weighting is equal to that in multiple regression analysis in
order to minimize the error of variance, like Krisnamurti et al. (2000). It is noted that this constraint ensures
that the prediction is in the range of possible climate (Shen et al., 2001). Shen et al. (2001) suggested that the
results are actually close despite the difference between their method and that of Krisnamurti et al. (2000).

In order to verify the predictability of the super-3 ensemble, a cross-validation procedure was applied for the
observed period of 49 years from 1954 to 2002. In variant 1, the super-3 ensemble model was constructed by
using the data for the 30 years from 1954 to 1983, and then the prediction was obtained in the independent
period (1984–2002). In variant 2, the super-3 ensemble model was constructed by using the data for the
30 years from 1973 to 2002, and then the prediction was obtained in the independent period (1954–1972).
Table III shows the sensitivity of skill on the number of retained EOF and SVD modes in both variants 1 and
2. Stable and skilful relations appear in retained mode 6 in both variants 1 and 2, even though the relation
is weaker than in the observations. The mean correlation skill of the super-3 ensemble for the verification
period is about 0.49, which is significant at the 5 % level.

Figure 10 shows the first coupled mode between the super-3 ensemble SLP and observed SLP. The
correlation coefficient between the two time coefficients is 0.76. This suggests that the super-3 ensemble
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Figure 9. Correlation patterns of (a) the SLP in East Asia for the super-3 ensemble and (b) winter precipitation of Korea. These patterns
explain about 44.7% of total variance. (c) The correlation coefficient (0.71) between the respective amplitude time series of these

patterns

Table III. The correlation skill (year-to-year/decadal) of the downscaling super-3 ensemble models for various combina-
tions of the number of EOFs of SLP and precipitation (PP) retained for SVDA and the number of SVD pairs used in the
statistical downscaling model. The skill is expressed by the correlation coefficients between observed time series and the
reconstructed time series obtained from applying the downscaling super-3 ensemble model to the large-scale AOGCM

SLP fields

Number of EOFs Number of SVDs Variant 1 Variant 2

SLP PP Fitting
(1954–83)

Verification
(1984–2002)

Fitting
(1973–2002)

Verification
(1954–72)

3 3 3 0.33/0.52 0.14/−0.23 0.63/0.54 −0.33/−0.19
4 4 4 0.60/0.64 0.25/0.39 0.76/0.84 −0.04/0.30
5 5 5 0.77/0.90 0.31/0.86 0.79/0.85 0.32/0.38
6 6 6 0.83/0.92 0.58/0.85 0.82/0.93 0.41/0.38
7 7 7 0.85/0.88 0.56/0.84 0.89/0.96 0.27/0.10
8 8 8 0.85/0.85 0.60/0.88 0.94/0.97 0.17/0.10
9 9 9 0.85/0.82 0.49/0.82 0.94/0.96 0.16/0.15

10 10 10 0.85/0.87 0.47/0.84 0.93/0.96 0.10/−0.05

reproduces the variability of the observed SLP, especially on the decadal time scale, although there are
some discrepancies between the two patterns. This implies that if the decadal variability is generated by
ocean variability in the AOGCMs and it is consistent, then coupled modes with observed precipitation are
constructed and physically reasonable even though the phase of time evolution of the control run is different
from the observations. The pattern of observed SLP shown in Figure 10(a) is similar to the one for precipitation

Copyright  2004 Royal Meteorological Society Int. J. Climatol. 24: 777–790 (2004)



788 M.-K. KIM ET AL.

60N

(a) Observation (b) Super 3

(c) CV1 (22.4%) (0.76)
1

1955 1960 1965 1970 1975
Year

1980 1985 1990 1995

0.5

0

–0.5

–1

45N

30N

15N
60E 90E 120E 150E 180 150W

60N

45N

30N

15N
60E 90E 120E 150E 180 150W

Figure 10. Covariance patterns of the SLP for (a) observation and (b) super-3 ensemble over East Asia. These patterns explain about
22.4% of total variance. (c) The correlation coefficient (0.76) between the respective amplitude time series of these patterns

shown in Figure 4(a). Similarly, the pattern of the super-3 ensemble shown in Figure 10(b) is also similar to
the one for precipitation shown in Figure 9(a), although there are some differences.

5. CONCLUSIONS

In this study, some conclusions may be drawn regarding both the methodology and the dynamic link between
large scale and regional scale. Some conditions have to be satisfied for the downscaling procedure to be useful
(von Storch et al., 1993; Busuioc et al., 1999). First, the GCMs should be capable of reproducing the large-
scale variability realistically. Second, the relationship between the large-scale and regional-scale parameters
has to be strong. In this study, it is shown that the superensemble prediction based on the downscaling was
satisfied with two conditions, and the dynamics were discussed.

The observed variability of Korean winter precipitation is associated with the second mode of SLP with the
east–west dipole pattern. In the EOF spatial pattern of the second mode, the Korean peninsula is located in
the centre of the dipole structure with one centre of action located on the East Asian continent and the other
one located in the northwest Pacific Ocean. This suggests that the warm moist flow from the northwest Pacific
Ocean is enhanced in the positive phase of the time coefficient (i.e. around 1970). The dynamic link between
Korean winter precipitation and the East Asian monsoon circulation is very strong, so that the predictability
of the downscaling method is very high, even on the year-to-year time scale.

The predictions of Korean winter precipitation were obtained from the superensemble using the downscaling
predictions obtained from the SLP predictors of six AOGCMs. Interestingly, although the number of AOGCMs
that participated in constructing the superensemble model increased the correlation skill in the training period,
the correlation skill decreased after arriving at the optimum combination in the independent period, implying
that the relationships between the super-3 ensemble SLP and regional precipitation are physically reasonable
and statistically stable over the whole period. The optimum combination used in the super ensemble is the
super-3 ensemble, which is a combination of the CCCma, CSIRO, and NCAR AOGCMs. The correlation
coefficient between observed and predicted in the super-3 ensemble is about 0.77 for the independent period
(1990–2000) on the year-to-year time scale. The performance of the super-3 ensemble is superior to that of
the downscaling prediction obtained from the large-scale SLP of any single AOGCM.
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Overall, the first four EOFs of SLP in the super-3 ensemble are very similar to those of the observed SLP.
The dynamic link between Korean winter precipitation and the East Asian monsoon circulation in the super-3
ensemble is similar to that of the observations, implying that the super-3 ensemble has two conditions to
be satisfied for the superensemble procedure to be useful. The predictability of the super-3 ensemble was
evaluated by using the cross-validation procedure and the two-tailed t-test. The mean correlation skill of the
super-3 ensemble for the verification period is about 0.49, which is significant at the 5 % level.
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