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1. Introduction

During the last few decades, climate scientists 
have made tremendous advances in understanding 
and modeling the Earth’s climate system. Although 
the most advanced technologies of the coupled at-
mosphere-ocean modeling and multi-model ensem-
ble (MME) technique have been applied to dynam-
ical seasonal prediction, limitations and challenges 
still remain (Palmer et al., 2004; Wang et al., 2008). 
It is certain that better dynamical seasonal prediction 
can be achieved by improving a dynamical model it-
self and its initialization process. In addition, given 
a large number of available dynamical model pre-
dictions, further improvement of prediction can be 
obtained from post-processing procedures such as 
MME techniques and statistical error correction (or 
downscaling) methods. During the last decade, a lot 
of efforts have been devoted to extracting optimal and 

skillful MME predictions from the available season-
al climate predictions by using a simple composite 
method (Peng et al., 2002; Palmer et al., 2004; Wang 
et al., 2008) or a weighted ensemble method based 
on the multiple regression method (Krishnamurti et 
al., 1999; Kharin and Zwiers, 2002; Yun et al., 2003), 
and a synthetic method (Chakraborty and Krishnamurti, 
2006). However, it remains an open question whether 
the sophisticated MME schemes are any better than 
the simple composite method for seasonal prediction.

It has been noted that the predicted dominant 
modes of interannual variation in precipitation tend 
to have a different spatial pattern from their observed 
counterparts but vary in a similar way to the observed 
one in the time domain (Feddersen et al., 1999; Kang 
et al., 2004). Based on that, coupled pattern techni-
ques have been developed to correct the systematic 
bias in the model by using a statistical relationship 
between the predicted and observed anomalies. The 
most commonly used methodologies of the coupled 
pattern technique are based on canonical correlation 
analysis (CCA) or singular value decomposition 
analysis (SVD) (Feddersen et al., 1999; Kang et al., 
2004) 

As a statistical post-processing, statistical down-
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scaling techniques have been also used to improve 
seasonal prediction. Kug et al., (2007) introduced a 
point-wise downscaling technique called a pattern 
projection method (PPM). The PPM method is based 
on the large-scale patterns of predictors correlated to 
local predictands. Kug et al., (2008a) recently in-
troduced an improved downscaling method named 
Stepwise Pattern Projection Method (SPPM), show-
ing improved prediction after its application to pre-
dicted SST by Seoul National University (SNU) 
CGCM (Kug et al., 2008b), especially over Western 
North Pacific and Indian Ocean where the model pro-
duces serious systematic bias. 

The objective of this study is aimed at producing 
optimal prediction from an existing suite of seasonal 
predictions. We present a new multi-model ensemble 
technique based on the statistical post-process. The 
MME scheme is verified using retrospective fore-
casts of 15 dynamic models for the period of 
1981-2001. The data and MME methodologies used 
are described in section 2. In section 3, the results of 
MME predictions using four different MME 
schemes are presented. Section 4 gives a brief sum-
mary and discussion.

2. Data and methodology

a. Retrospective forecast data

The 15 retrospective forecast data sets used are for 
the period 1981-2001 and were obtained from 
Development of a European Multi-model Ensemble 
system for seasonal to inTERannual prediction 
(DEMETER) (Palmer et al., 2004) and the Asia- 
Pacific Economic Cooperation Climate Center/ 
Climate Prediction and Its Application to Society 
(APCC/CliPAS) (Wang et al., 2008) projects. The 
DEMETER project produced 7 one-tier predictions 
and the APCC/CliPAS project produced 5 one-tier 
and 5 two-tier predictions. Table 1 presents a brief 
summary of each model. For more details of the mod-
els, the reader is referred to the relevant literatures cit-
ed in the Table 1. Among those predictions, we uti-
lized 15-model predictions integrated from May 1st 
for the most of models targeting one-month lead 

prediction. Since each prediction model has several 
ensemble members from slight different initial con-
ditions, ensemble mean of each model was taken. In 
this study, the target variable is summer-mean (JJA) 
precipitation.

Before applying MME methods, the ensemble 
mean prediction of each model was interpolated to 
a common 2.5o latitude x 2.5o longitude grid which 
is comparable to the resolution of the observed data. 
Note that the MME methods are applied after system-
atic climatological biases are removed by subtracting 
the forecast climatology of each model.

b. Observed data

The Climate Prediction Center Merged Analysis 
of Precipitation (CMAP) data were used to verify the 
climate model’s performance for the period 
1981-2001. The data are produced by merging rain 
gauge data, five kinds of satellite estimates, and a nu-
merical model prediction. 

c. MME Schemes

In this study, we compare several possible MME 
methods and propose a new optimal MME scheme. 
The following is a brief description of the MME 
methods utilized here. 

(1) MME-EW
This equal weighting (EW) method is a simple but 

powerful method for seasonal climate prediction. 
The MME-EW is defined by 
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where Y(t) is a MME prediction for time t, N is the 
total number of models being used, Fi(t) is a forecast 
of the ith model for time t. 

(2) MME-SVD
This method is a kind of weighted ensemble 

scheme defined by
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where ai denotes a weighting coefficient for the ith 
model. The weighting coefficients are obtained from 
applying the SVD method to calculate the regression 
coefficients for a set of different model forecasts. In 
this SVD method, if the singular value is less than a 
minimum criterion (1x10-5), the singular mode is not 
used. However, the minimum criterion is not much 
sensitive to the result. Refer to Yun et al., (2003) for 
details of the algorithm for obtaining the coefficients. 
They have shown the SVD method to be comparable 
to or somewhat better than the multiple re-
gression-based scheme for seasonal climate pre-
diction (Krishnamurti et al., 1999). 

(3) MME-SPPM
This method involves a simple composite method 

after statistical downscaling of the prediction of each 
dynamical model based on a statistical model using 
the SPPM proposed by Kug et al., (2008a) as follows:
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where iF̂  is a corrected forecast of the ith model ob-
tained through the SPPM procedure. Because every 
dynamical model has a systematic bias, its predictive 
skill can be improved by reducing the systematic 
error. The SPPM is a statistical model which is de-
signed to correct any systematic bias in dynamical 
prediction. After applying the SPPM to individual 
models separately, the MME prediction is obtained 

Table 1. Description of 15 seasonal prediction models used in this study. 

Institute AGCM OGCM Ensemble
member Reference

CERFACE ARPEGE
T63 L31

OPA 8.2
2.0o x2.0o L31 9 Deque (2001)

ECMWF IFS
T95 L40

HOPE--E
1.4o x 0.3o-1.4o L29 9 Gregory et al. (2000)

INGV ECHAM4
T42 L19

OPA 8.2
2.0o lat x 2.0o lon L31 9 Madec et al. (1998)

LODYC IFS
T95 L40

OPA 8.0
182GPx152GP L31 9 Gregory et al. (2000)

Meteo-France ARPEGE
T63 L31

OPA 8.0
182GPx152GP L31 9 Deque (2001)

UKMO HadAM3
2.5x3.75L19

GloSea OGCM
1.25ox0.3-1.25oL40 9 Roeckner (1996)

Marsland et al. (2003)

MPI ECHAM5
T42 L19

MPI-OM1
2.5o lat x 0.5o-2.5o lon L23 9 Marsland et al. (2002)

NCEP
CFS

GFS
T62 L64

MOM3
1/3o lat x 1o lon L40 15 Saha et al. (2006)

SNU SNU
T42 L21

MOM2.2
1/3o lat x 1o lon L32 6 Kug et al. (2008b)

UH ECHAM4
T31 L19

UH Ocean
1o lat x 2o lon L2 10 Fu and Wang (2001)

FSU FSUGSM
T63 L27 SNU SST forecast 10 Cocke. and LaRow( 2000)

GFDL AM2
2o latx2.5o lon L24 SNU SST forecast 10 Anderson et al. (2004)

NCEP GFS
T62 L64 CFS SST forecast 15 Saha et al. (2006)

SNU/KMA GCPS
T63 L21 SNU SST forecast 6 Kug et al. (2008b)

UH ECHAM4
T31 L19 SNU SST forecast 10 Roeckner et al. (1996)
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by the equal-weighting simple composite of the cor-
rected individual predictions. 

The SPPM is a kind of pointwise regression model. 
The predictor of the model is a pattern of predicted 
precipitation in a certain domain and the predictand 
is precipitation at each grid point over the global 
domain.

The main idea is to predict the predictand at each 
grid by projecting the predictor field onto the co-
variance pattern between the large-scale predictor 
field and the one-point predictand. The model equa-
tion is as follows:
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where x and t denotes spatial and temporal grids, 
respectively. The covariance pattern (COV) is calcu-
lated between the observed predictand, PRCP(t), and 
predictor field, Ψ(x,t), in certain domain (D). The co-
variance pattern indicates a pattern of the model pre-
diction which is related to the observed predictand. 
The variable, P, indicates a projected time series from 
the covariance pattern and predictor field from model 
prediction, Ψ(x,t). The parameter, α, is a regression 
coefficient of the projected time series, P, on the pre-
dictand during a training period, T. In this study, we 
used a training period of 20 years in the cross-vali-
dation process. 

In this statistical prediction, selection of the pre-
dictor domain (D) plays a crucial role in the predictive 
skill. In general, traditional pattern projection mod-
els use a fixed geographical domain whose location 
and size are fixed for the predictor during the whole 
forecast period. This method seems appropriate for 
regional climate prediction, where the number of pre-
dictands is limited. However, when the prediction 

target covers a wide region, so that the number of pre-
dictands is large, as is the case in the present study, 
it is difficult to subjectively choose the predictor 
domain. Therefore, a method is required to facilitate 
the objective selection of the prediction domain. In 
the SPPM process, the optimal predictor domain is 
automatically selected with an objective criterion.

The SPPM consists of two steps to obtain the final 
prediction. The first step is to select the predictor do-
main, and the second step is a prediction by the pattern 
projection in Eq. (1). In the first step, to select the pre-
dictor domain, correlation coefficients between the 
predictand and precipitation (predictor variable) at 
each grid are calculated to seek out a possible pre-
dictor domain. Among them, some grid points, show-
ing significantly higher correlation, are selected as 
predictor grid points. In this case, the selected grids 
may be split into several regions. In the traditional 
statistical model, only one geographical domain, in-
cluding significant grids, is selected as a predictor do-
main, while other grids outside the selected domain 
are not used. However, in the SPPM, all significant 
grid points are gathered and a reconstructed domain 
is constructed by lining up the selected grid points. 
The reconstructed domain is regarded as a predictor 
domain (D). Using the selected predictors, the SPPM 
produces a corrected forecast based on Eq. (1). For 
details on the SPPM procedure, refer to Kug et al., 
(2008a).   

(4) MME-SPPM2
This method is a modified version of the 

MME-SPPM. In the MME-SPPM, all participant 
models are used for a simple composite at each grid 
after each individual model is corrected by the SPPM. 
However, in the MME-SPPM2 some model pre-
dictions, which have poor skill, are excluded from the 
simple composite. That is, only qualified model pre-
dictions that have predictable skill are used for the 
multi-model ensemble at each grid point. Because 
poor models may degrade the skill of the multi-model 
ensemble, the MME-SPPM skill can be improved by 
removing the predictions of the relatively poor 
models. In order to know whether each model pre-
diction has predictable skill or not, double-cross-val-
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idation method (Feddersen et al., 1999) is used in the 
SPPM procedure.  The double-cross-validation is 
outlined below for the statistical prediction at time t0.
i) Make 20-yrs dataset by excluding t0 data from 
21-yrs data.
ii) Apply the SPPM with the cross-validation 
procedure. In this case, the training period will be 19 
years.
iii) Calculate a hindcast skill for 20 years when the 
t0 data are excluded.
iv) Repeat i)-iii) process for the other all t0. 
In the double-cross-validation process, the hindcast 
skill of the individual model at each grid and each pre-
diction year is calculated. If the correlation skill dur-
ing the training period is higher than a threshold val-
ue, the model prediction is selected for the mul-
ti-model ensemble. In this study, we used a correla-
tion 0.3 as the threshold value. We checked the results 

with different values (0.4, 0.2, and 0.1) of the thresh-
old, but the main results were not changed.  

3. Results

The MME-SPPM2 method and another three 
MME schemes have been evaluated using 15 climate 
models’ retrospective forecasts for the period 
1981-2001. Figure 1 shows the mean correlation skill 
of 15 individual models (hereafter referred to as 
“single model correlation”) and the correlation skill 
for MME with equal weighting (MME-EW), MME 
with the SVD method (MME-SVD) and simple 
MME after applying statistical correction (MME- 
SPPM and MME-SPPM2). All MME methods have 
a better correlation skill than the single model, in-
dicating that a MME approach is an effective way to 
improve current climate seasonal prediction. The 

Fig. 1. a) Mean correlation skill of 15 individual models for JJA precipitation anomaly during the period 
1981-2001, and correlation skill of MME by b) MME-EW, c) MME-SVD, d) MME-SPPM, and e) MME-SPPM2.
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area-averaged skill over the global domain between 
60oS and 60oN is 0.12 for the single model, 0.24 for 
the MME-EW, 0.24 for the MME-SVD, 0.31 for the 
MME-SPPM, and 0.38 for the MME-SPPM2. 

Over the tropical Oceans, it is difficult for the so-
phisticated methods to beat the skill of the MME-EW, 
the simplest scheme. Over the continental region and 
extratropical oceans, however the MME-SPPM pro-
vides an improved skill to some extent. It is because 
the current dynamical models are capable of captur-
ing large scale pattern related to a local variability 
over the continental region and extratropical oceans, 
though they have difficulty in predicting a local varia-
bility correctly at each grid point. It is shown that the 
skill of the MME-SPPM2 is significantly improved 
compared to that of the MME-SPPM. We found that 
the difference between two MME-SPPMs is sig-
nificant when the MME-SPPM has poor skill (not 
shown). Note that the MME-SPPM uses the simple 
composite after the statistical correction. This im-
plies that the simple composite method may have a 
problem when the skills of individual models are 
poor and diverse. In this sense, the MME-SVD 
should be the best candidate because the weighting 
coefficients are determined based on the skill of each 
model. However, the actual predictive skill of the 
MME-SVD seems worse than those of other MME 
methods, and the correlation pattern looks quite 
random. Because the weighting coefficients are cal-
culated from relatively small prediction sample (20 
years) and the number of models is large, the co-
efficients are not statistically stable in the cross-vali-
dation process. This brings about the so-called over-
fitting problem in the training process. Therefore, the 
forecast skill is degraded and correlation pattern can 
be localized. We have concluded that the weighted 
ensemble method is not appropriate to seasonal cli-
mate prediction data, unlike medium-range pre-
diction which can use a lot of sampling data (c.f. 
Krishnamuti et al., 1999). Kharin and Zwiers (2002) 
also derived the similar conclusion using 10 different 
models.   

It was also found that the major improvement of 
the MME-SPPM and MME-SPPM2 is achieved 
against MME-EW over the regions in which the sin-

gle model skill is poor (See Fig. 1a). Figure 2 shows 
the averaged skill of each MME method according 
to the mean correlation skill of individual model over 
most of the global grids over 60oS-60oN. Note that 
the bin size of the x-axis is 0.04 and only the average 
value at each bin range of the x-axis is marked. It is 
shown that the MME-EW is comparable to the 
MME-SPPM2 and better than the other MME meth-
ods over the region where the averaged skill of in-
dividual models is over 0.2. This indicates that if the 
individual model has a certain level of prediction 
skill, the simple composite might be enough. 
However, the skill of the simple method is apparently 
degraded if the single model correlation is less than 
0.2. In this case, the MME-EW becomes the worst 
method. Noted that the MME-EW is even worse than 
the single-model prediction, when the averaged cor-
relation skill of the single models is less than zero. 
This indicates that this simple composite MME 
method works only when the single models has some 
predictive skill. 

On the other hand, other MME methods still have 

Fig. 2. Scatter diagram between averaged correla-
tion skill of single models (x-axis), and correlation 
skill of each MME method (y-axis). The bin size of 
x-axis is 0.04 and only the average value at each bin
range of x-axis is marked. Black, blue, red, and green 
circles denote the skill of MME-EW, MME-SVD, 
MME- SPPM, and MME-SPPM2 method, respectively.
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predictive skill, even though the individual models have 
no predictive skill. This is because these MME methods 
have an algorithm to reduce any systematic bias, unlike 
the MME-EW. It is interesting that the skills of these 
methods is significantly higher as the correlation skill 
of a single model is negatively stronger, because the 
strong negative correlation means that the poor skill is 
contributed not by random bias but by anomalous sys-
tematic bias. It is clear that the MME-SPPM2 always 
has the best skill. In particular, the MME-SPPM2 has 
a significantly higher skill when the single models have 
poor skills, because it excludes some poor models’ con-
tributions to the MME. Therefore, it can be concluded 
that the MME- SPPM2 is the optimal MME method for 
at least the present hindcast data. 

Why does the MME-SPPM2 have better skill? It 
might result from removing untrustworthy pre-
dictions before making MME. Figure 3 shows the 
averaged number of model which is contributed to 
the final MME-SPPM2 prediction for 21-years 
prediction. It is interesting that there is a spatial sim-
ilarity between Fig. 3 and Fig. 1d, indicating that the 
region with high correlation skill corresponds to the 
region with high number of the reliable predictions. 
Note that the only difference between the MME- 

SPPM and MME-SPPM2 is either using all pre-
dictions or using just reliable predictions. Over the 
extratropics, only a few models show a reliable pre-
diction, so degradation of the MME skill is inevitable 
if all of predictions are used for MME. However, just 
using only reliable predictions, the MME-SPPM2 is 
capable to improve skill over many regions where the 
number of reliable prediction is very small. In addi-
tion, we found the MME skill increases as a number 
of reliable prediction increases. Therefore, it seems 
that there are still room to improve the forecast skill 
over continental region and extratropical Ocean re-
gions through adding reliable predictions more in 
future.

In the present study, we used a relatively large 
number of prediction models. Therefore, our results 
can change as the number of models for the MME is 
changed. To check this, the dependency of MME skill 
on the number of models being used for the MME was 
evaluated. To obtain the mean skill when the model 
number used for MME is N, N models among 15 are 

Fig. 3 The number of model which is contributed to the MME-SPPM2 prediction. The number is averaged
for 21-years prediction. 

1) If all possible cases are less than 500, we used all possible
combinations.
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randomly selected and its MME skill is calculated. 
After this selection is repeated 500 times1), the mean 
skill for the 500 cases is determined at each grid point. 
Figure 4 shows the mean correlation skill with vari-
ous model numbers. For simplicity, the correlation 
skill is area-averaged over the globe (0o-360oE, 
60oS-60oN). It is clear that the MME skills are higher 
as the number of models increases, because the re-
duction of systematic and random errors is more 
effective. It is interesting that the MME-EW and 
MME-SPPM show very similar sensitivities which 
are characterized by rapid saturation of skill after 
more than 8 models are used. It turns out that the 
MME-SPPM2 scheme is the most effective for MME 
prediction with a large number of models. It is quite 
interesting that the skill of the MME-SPPM2 seems 
to be still increasing even when all 15 models are 
used. Therefore it is expected that the skill of the 
MME-SPPM2 can be further improved by increas-
ing the model number. However, if the number of 
models for MME prediction is smaller than 5, the skill 
of the MME-SPPM is better than that of MME- 
SPPM2. This indicates the MME-SPPM2 is the opti-
mal method when the number of participant models 
for MME is large.

4. Summary and Discussion

During the last decade, a lot of effort has been de-

voted to extracting optimal and skillful MME pre-
diction from available seasonal climate predictions 
by using either simple or sophisticated statistical 
methods. While sophisticated MME schemes tend to 
produce better forecast skills than simple MME with 
equal weighting (MME-EW) during training period, 
they have difficulty in beating MME-EW for in-
dependent or real-time forecast (over-fitting prob-
lem). In this study, we propose a new optimal MME 
method and identify the strength and disadvantage 
of existing and the newly invented MME schemes. 

A new MME technique, named the MME-SPPM2 
has been proposed and evaluated for seasonal climate 
predictions of 15 models. To assess the value of the 
MME-SPPM2 in use, it has been compared with two 
existing methods, the MME-EW and MME-SVD, 
and pre-version of the new MME scheme named the 
MME-SPPM. When it comes to the seasonal pre-
diction for the summer mean precipitation, the 
MME-SPPM2 provides better skill than other MME 
methods over the continental regions and extra-
tropical ocean. However, it is hard for the MME- 
SPPM2 to defeat the skill of the MME-EW over the 
equatorial Pacific region. It is noted that if the aver-
aged skill of individual models is higher than 0.2, the 
MME-EW is comparable to the MME- SPPM2 and 
better than the other MME methods. Otherwise, the 
prediction skill is conspicuously improved by using 
the MME-SPPM2. Also, it turns out that the MME- 
SPPM2 works most effectively when a larger number 
of models are used for MME. 

From the aforementioned results, we demonstrate 
that the MME-SPPM2 is the optimal MME method, 
especially when the number of models being used is 
large. Nevertheless, its forecast skill for the summer 
mean precipitation is still inadequate to provide use-
ful information to the public, especially over the con-
tinental region, and further improvement is necessary. 

How can we improve the current seasonal pre-
diction and MME-SPPM2? We propose three possi-
ble ways. Firstly, further improvement of a dynam-
ical model itself is essential. The resolution and phys-
ical parameterization are crucial factors in any dy-
namic model’s performance. Also, initialization in 
the atmosphere, land, and ocean coupled system will 

Fig. 4. The dependence of MME prediction skill on the 
number of model averaged over the globe (0-360E, 60S-60N).
Black, red, and green lines indicate the skill of MME-EW,
MME-MME-SPPM, and MME-SPPM2, respectively.
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be big challenge in seasonal climate prediction. 
Secondly, we suggest that a retrospective forecast 

period should be extended. Most seasonal prediction 
studies and operational prediction systems have been 
based on retrospective hindcast data for the recent 
two decades. However, these short hindcast data can-
not produce a stable statistical relation in statistical 
post-processing because the statistical model cannot 
separate systematic bias from random bias correctly 
(Kug et al., 2008a). Therefore, the post-processing 
cannot be effective. This problem is easily solved by 
just increasing the hindcast sample (see Kug et al., 
2008a). Thirdly, it is suggested to increase the number 
of participant models in MME prediction. Increasing 
trend in Fig. 4 indicates that the forecast skill of the 
MME-SPPM2 will be possibly improved with more 
predictions in addition to 15 predictions especially 
over the extratropical continental regions where few 
predictions are reliable among 15 predictions (Fig. 3).  
Including more participant predictions is expected to 
improve the MME skill further.
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